China supplier Long Life Double Axis Linear Guide Rail Sgr10 Sgr15 Sgr20 Sgr25 Sgr35 with Slide Block Sgb10 Sgb15 Sgb20 Sgb25 Sgb35

Product Description

Product Description

 

 

 

 

Stock

yes

Delivery time

5-7 days

Used

building industry machinery

 

Company Profile

 

In 2013, 1 associates decided to create an innovative sales service of bearings to satisfy diffierent kinds of application.

In order to supply even more stable quality to our vast customers, we established a factory in HangZhou city, ZHangZhoug province, China, near HangZhou and ZheJiang port, which has recognized by special ISO. The various bearings we produce there have been inspected and confirmed by SGS to be RoHS compliant.

In order to satisfy our customer’s diffierent industrial requirement: Advises, quick quotations, quick delievery, difficullt sourcing bearing products, the best suitable bearing(price, quality), We are working with over 300 suppliers to make sure to get the perfect part for you. We strive to offer the most precise and most suitable bearing for each part.

We Registered “GNYAR” in 2014, registered “MAJC” in 2018, both was received in high-performance praise, and earned high reputation among customers from motorcycle parts, auto parts and embroidery machine spare parts, Power tools, agricultural machine, bicycle, Semiconductor Facilities. Fitness Equipments, Toys, fishing, industrial using design.

After years of development, we believe that by establishing a mutually beneficial relationship with our customers we can both continue to grow and prosper, we wish and hope to always grant you satisfaction.

Product application

 

 

Certifications

 

Packaging & Shipping

 

 

FAQ

Q1: Is sample free of charge?
A: Sample fee will be returned in the 1st PI payment .

Q2: How long it takes to ship goods to my country?
A: We have inventory for samples, normally 7 days to arrive at your office.

Q3: How is MOQ?
A: 500pcs with customized logo and color.

Q4: How long it takes to make a customized sample?
A: Normally the leadtime is 2-3 weeks since it requires logo tooling and color adjustment.

Q5: how about quality?
A: Always a pre-production sample before mass production; Always final Inspection before shipment

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Warehouse Crane, Building Crane, Workshop Crane
Material: Steel
Structure: Container Crane
Installation: All-Terrain Crane
Driven Type: Hydraulic
Carrying Capacity: Special Weight Level
Samples:
US$ 1/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

linear rail

Can you provide guidance on the selection and sizing of linear rails for specific linear motion applications?

When selecting and sizing linear rails for specific linear motion applications, several factors need to be considered to ensure optimal performance. Here is guidance on the key considerations:

1. Load Requirements: Determine the maximum load the linear rail system will need to support. Consider both static and dynamic loads, as well as any potential impact or shock loads during operation.

2. Travel Distance: Evaluate the required travel distance of the linear rail system. Different rail types and designs are suitable for short-range, medium-range, or long-range travel, so choose accordingly based on the application’s needs.

3. Precision and Accuracy: Assess the precision and accuracy requirements of the application. High-precision applications, such as CNC machining or optical systems, may require linear rails with specialized designs to meet stringent accuracy standards.

4. Speed and Acceleration: Consider the desired speed and acceleration of the linear motion. Different rail systems have specific capabilities in terms of speed and acceleration, so choose a system that aligns with the application’s performance requirements.

5. Environmental Conditions: Evaluate the environmental conditions in which the linear rail will operate. Factors such as temperature, humidity, and exposure to contaminants can impact the choice of materials, coatings, and lubrication for the linear rail system.

6. Mounting Configurations: Consider the available space and mounting configurations in the application. Linear rails come in various designs, including profiled rail systems, round rail systems, and others. Choose a design that fits the available space and allows for easy integration.

7. Budget Constraints: Assess budget constraints and cost considerations. Linear rail systems come in a range of price points, and balancing performance requirements with budget constraints is essential for cost-effective solutions.

8. Manufacturer and Supplier Expertise: Collaborate with experienced linear rail manufacturers or suppliers. Seek their expertise in selecting the most suitable rail system based on the application’s specific requirements. They can provide valuable insights, technical support, and customized solutions.

By carefully considering these factors, engineers and decision-makers can make informed choices in selecting and sizing linear rails for specific linear motion applications, ensuring optimal performance and longevity of the system.

linear rail

How do innovations and advancements in linear rail technology impact their use?

Innovations and advancements in linear rail technology have a profound impact on their use, influencing performance, efficiency, and application possibilities. Here are key ways in which technological advancements impact the use of linear rails:

  • 1. Enhanced Precision: Advancements in manufacturing processes and materials contribute to higher precision in the design and production of linear rails. This results in improved accuracy and repeatability in linear motion applications, making them suitable for tasks requiring intricate and precise movements, such as in CNC machining and 3D printing.
  • 2. Increased Load Capacities: Ongoing innovations allow for the development of linear rails with increased load-bearing capabilities. This is particularly beneficial in industries and applications where heavy loads need to be moved with precision, such as in industrial automation and material handling systems.
  • 3. Integration of Smart Technologies: The integration of smart technologies, such as sensors and feedback systems, enhances the monitoring and control capabilities of linear rail systems. This facilitates real-time data collection, predictive maintenance, and improved overall system efficiency, particularly in automated and Industry 4.0 settings.
  • 4. Energy Efficiency: Innovations in lubrication systems and materials contribute to increased energy efficiency in linear rail operation. Reduced friction and optimized designs help minimize energy consumption, making linear rails more environmentally friendly and cost-effective over their lifespan.
  • 5. Customization and Modularity: Advanced manufacturing techniques enable greater customization and modularity in linear rail systems. Engineers can tailor linear rails to specific application needs, adjusting parameters such as length, load capacity, and material composition for optimal performance in diverse industrial and automation scenarios.
  • 6. Durability and Longevity: Continuous improvements in materials and surface treatments enhance the durability and longevity of linear rails. This is particularly beneficial in applications where reliability and minimal maintenance are critical, such as in aerospace testing equipment and high-precision manufacturing.

Overall, innovations in linear rail technology contribute to a broader range of applications, improved performance metrics, and the ability to meet the evolving needs of diverse industries. As technology continues to advance, the versatility and effectiveness of linear rails in various industrial and automation settings are likely to expand even further.

linear rail

What industries and machinery commonly use linear rails for precise linear movement?

Linear rails find widespread use in various industries and machinery where precise linear movement is crucial. Some common applications include:

  • Manufacturing Machinery: Linear rails are integral components in CNC machines, milling machines, lathes, and other manufacturing equipment. They ensure accurate and repeatable motion for precise machining processes.
  • Robotics: Linear rails play a key role in robotic systems, providing the necessary guidance and precision for the movement of robot arms and other robotic components.
  • Automation Systems: Industries employing automated systems, such as conveyor systems and pick-and-place machines, often utilize linear rails to achieve precise linear movement in the automation process.
  • 3D Printing: Linear rails contribute to the accuracy and stability of 3D printers by facilitating the precise movement of print heads and build platforms.
  • Medical Devices: Linear rails are used in medical equipment such as imaging devices, diagnostic instruments, and robotic-assisted surgery systems, where precise linear motion is critical.
  • Aerospace: The aerospace industry employs linear rails in various applications, including aircraft manufacturing and testing equipment, to ensure precision in movement and positioning.
  • Semiconductor Manufacturing: Linear rails are used in semiconductor manufacturing equipment for precise movement in processes such as wafer handling and inspection.

These examples demonstrate the versatility of linear rails across different industries, highlighting their importance in applications that demand accurate and reliable linear motion.

China supplier Long Life Double Axis Linear Guide Rail Sgr10 Sgr15 Sgr20 Sgr25 Sgr35 with Slide Block Sgb10 Sgb15 Sgb20 Sgb25 Sgb35  China supplier Long Life Double Axis Linear Guide Rail Sgr10 Sgr15 Sgr20 Sgr25 Sgr35 with Slide Block Sgb10 Sgb15 Sgb20 Sgb25 Sgb35
editor by CX 2024-04-09