China manufacturer Stainless Steel Miniature Linear Guide Mgn3 Mgn5 Mgn7 Mgn9 Linear Guide Rails and Block for Automatic Machine

Product Description

Product Description

Product Name Stainless Steel Miniature Linear Xihu (West Lake) Dis. MGN3 MGN5 MGN7 MGN9 linear guide rails and block for Automatic Machine
Material Gcr15 bearing steel or stainless steel
Size 7/9/12/15mm
Length of linear guide rail 100mm-4000mm,any length will be available
Usage CNC machinery

Product Parameters

Packaging & Shipping

Packaging Details:   1)Sample order packing by paper carton for saving freight charge; 

                                 2)bulk order sent by sea will be packed by film and wooden carton.

                                 3) as customer’s requirements. 
Delivery Detail:      within 5-15 days against payment

Company Profile

ZheJiang Sair Mechanical Xihu (West Lake) Dis. Co., Ltd is located at Xihu (West Lake) Dis. Industrial Zone Xihu (West Lake) Dis. County which is the beautiful Xihu (West Lake) Dis. Water City and the famous painting and calligraphy village.The south is 308 National Road, the west is the 105 National Highway, the north is HangZhou-HangZhou Highway, the position is very superior. It is 1 of the biggest linear guide manufacturers in China.

Our Services

FAQ

1. Q: How about the quality of your product?
A: 100% inspection during production.
Our products are certified to ISO9001-2008 international quality standards.

2. Q: What’s the delivery time?
A: For custom order, within 2000 meters, production time is 15days after confirmed every details.

3. Q: What’s your packing?
A: Our Normal packing is bulking in PE bag, and then into plywood Cartons. We also can pack products according to your requirement.

4. Q: What about the warranty?
A: We are very confident in our products, and we pack them very well to make sure the goods in well protection.

5.Q: Could you send me your catalogue and price list?
A: As we have more than hundreds of products, it is really too hard to send all of catalogue and price list for you. Please inform us the style you interested, we can offer the pricelist for your reference.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: 3D Printer
Material: Stainless Steel
Structure: Linear Guide Rail and Block
Samples:
US$ 9/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

linear rail

Can you describe the various mounting options and installations for linear rails in different settings?

Linear rails can be mounted in various configurations to suit different settings and applications. The choice of mounting options depends on factors such as space constraints, load requirements, and the desired motion characteristics. Here are some common mounting options and installations:

1. Horizontal Mounting: Linear rails are horizontally mounted when the desired linear motion is along the horizontal axis. This configuration is commonly used in applications such as CNC machines, where the tool needs to move horizontally across the workpiece.

2. Vertical Mounting: Vertical mounting involves installing linear rails to support vertical linear motion. This configuration is prevalent in applications like vertical machining centers, where the spindle moves vertically to perform machining operations on the workpiece.

3. Inverted Mounting: Inverted mounting is where the linear rail is installed upside down. This configuration is suitable when space limitations or specific design requirements dictate the need for the rail to be positioned below the moving component. Inverted mounting is common in some types of robotic systems.

4. Parallel Mounting: Linear rails can be mounted in parallel to support multiple carriages or moving components. This configuration is beneficial in applications where synchronized linear motion is required, such as in certain types of material handling systems or conveyor belts.

5. Cantilever Mounting: Cantilever mounting involves mounting the linear rail with one end extending beyond a support structure. This configuration is used when access to one side of the linear motion is required, such as in loading and unloading stations on manufacturing lines.

6. Tandem Mounting: Tandem mounting involves mounting multiple linear rails in tandem to share the load and provide additional support. This configuration is suitable for applications with heavy loads or long travel distances, ensuring stability and preventing deflection.

7. Floating Mounting: Floating mounting allows for some degree of flexibility in the alignment of the linear rail. This is useful in applications where there may be minor misalignments or variations in the mounting surface.

The choice of mounting option depends on the specific requirements of the application, and engineers must carefully consider factors such as load distribution, accessibility, and alignment to ensure optimal performance and longevity of the linear rail system.

linear rail

What are the typical load capacities and travel distances for linear rails?

The load capacities and travel distances for linear rails vary based on the specific design, size, and application requirements. Here are general considerations:

Load Capacities:

  • Light-Duty Applications: Linear rails in smaller sizes may be suitable for light-duty applications with load capacities ranging from a few hundred pounds to a few thousand pounds. These are commonly used in applications like 3D printers and light-duty automation systems.
  • Medium-Duty Applications: Linear rails in medium sizes are designed for applications with moderate load requirements. Typical load capacities for medium-duty linear rails range from a few thousand pounds to tens of thousands of pounds. These are often used in CNC machines, robotic systems, and material handling equipment.
  • Heavy-Duty Applications: Larger linear rails are built for heavy-duty applications with substantial load requirements. Load capacities for heavy-duty linear rails can extend into the hundreds of thousands of pounds. These are employed in industrial machinery, aerospace testing equipment, and other heavy-duty applications.

Travel Distances:

  • Short-Range Travel: Some linear rails are designed for short-range travel, with typical distances ranging from a few inches to a few feet. These are suitable for applications with limited linear motion requirements, such as in certain types of printing machinery.
  • Medium-Range Travel: Linear rails for medium-range travel cover distances from a few feet to several feet. These are commonly used in applications like CNC machines and automation systems where moderate linear motion is required.
  • Long-Range Travel: Linear rails with long-range travel capabilities are designed for applications where extensive linear motion is necessary. These can cover distances ranging from several feet to meters and are used in applications such as large-scale industrial automation and material handling systems.

It’s essential to consult manufacturer specifications and consider factors such as speed, acceleration, and environmental conditions when selecting linear rails to ensure they meet the specific load and travel requirements of a given application.

linear rail

What are linear rails, and how are they used in linear motion systems?

Linear rails, also known as linear guides or linear slides, are mechanical components used in linear motion systems to facilitate smooth and precise movement along a straight path. They typically consist of a rail and a carriage. The rail is a long, rigid structure with a specially designed profile, while the carriage is mounted on the rail and holds the load to be moved.

Linear rails are widely used in various applications, including manufacturing machinery, robotics, 3D printers, and automated systems. They provide guidance and support to the moving components, minimizing friction and ensuring accurate and repeatable motion. The design of linear rails allows for high load-carrying capacity and can accommodate different types of loads, such as radial or axial loads.

Linear motion systems incorporating linear rails offer advantages such as improved precision, reduced wear and tear, and increased efficiency in comparison to traditional sliding mechanisms. The choice of linear rails depends on factors such as load capacity, speed, accuracy requirements, and environmental conditions in the specific application.

China manufacturer Stainless Steel Miniature Linear Guide Mgn3 Mgn5 Mgn7 Mgn9 Linear Guide Rails and Block for Automatic Machine  China manufacturer Stainless Steel Miniature Linear Guide Mgn3 Mgn5 Mgn7 Mgn9 Linear Guide Rails and Block for Automatic Machine
editor by Dream 2024-05-15